Local Adaptive Multiplicative Error Models for High- Frequency Forecasts
نویسندگان
چکیده
We propose a local adaptive multiplicative error model (MEM) accommodating timevarying parameters. MEM parameters are adaptively estimated based on a sequential testing procedure. A data-driven optimal length of local windows is selected, yielding adaptive forecasts at each point in time. Analyzing one-minute cumulative trading volumes of five large NASDAQ stocks in 2008, we show that local windows of approximately 3 to 4 hours are reasonable to capture parameter variations while balancing modelling bias and estimation (in)efficiency. In forecasting, the proposed adaptive approach significantly outperforms a MEM where local estimation windows are fixed on an ad hoc basis. JEL classification: C41, C51, C53, G12, G17
منابع مشابه
Adaptive correction of deterministic models to produce probabilistic forecasts
This paper considers the correction of deterministic forecasts given by a flood forecasting model. A stochastic correction based on the evolution of an adaptive, multiplicative, gain is presented. A number of models for the evolution of the gain are considered and the quality of the resulting probabilistic forecasts assessed. The techniques presented offer a computationally efficient method for...
متن کاملAdaptive Spectral Separation Two Layer Coding with Error Concealment for Cell Loss Resilience
This paper addresses the issue of cell loss and its consequent effect on video quality in a packet video system, and examines possible compensative measures. In the system's enconder, adaptive spectral separation is used to develop a two-layer coding scheme comprising a high priority layer to carry essential video data and a low priority layer with data to enhance the video image. A two-step er...
متن کاملپیشبینی قیمتهای نقدی گازطبیعی به کمک مدلهای غیرخطی ناپارامتریک
Developing models for accurate natural gas spot price forecasting is critical because these forecasts are useful in determining a range of regulatory decisions covering both supply and demand of natural gas or for market participants. A price forecasting modeler needs to use trial and error to build mathematical models (such as ANN) for different input combinations. This is very time consuming ...
متن کاملEmpirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation
This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system. In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to sel...
متن کاملMean-square stability properties of an adaptive time-stepping SDE solver
We consider stability properties of a class of adaptive time-stepping schemes based upon the Milstein method for stochastic differential equations with a single scalar forcing. In particular we focus upon mean-square stability for a class of linear test problems with multiplicative noise. We demonstrate that highly desirable stability properties can be induced in the numerical solution by the u...
متن کامل